miércoles, 23 de abril de 2008

Cuestionario

1.- ¿Que es una enzima?
Son proteinas que disminuyen la cantidad de energía que se requiere para llevar acabo una reacción, esta actividad catalitica es especifica y son moleculas producidas por las celulas de los organismos vivos con la función de catalizar reacciones quimicas.
2.-¿Como se clasifican las enzimas?
Se pueden clasificar según varios criterios; en primer lugar considerece aquel que se relaciona con el tipo de reacción que catalizan.
Esta es la clasificacion internacional:
1) Oxidoreductasas: Catalizan la reacción de oxidoreducción al adicionar o extraer un hidruro(H:)
2) Transferasas: Transfieren diferentes moleculas
3) Hidrolasas: Introducen una molecula de agua en el sitio de rotura
4) Liasas: catalizan el rompimiento de un enlace covalente o su formación.
5) Isomerasas: Catalizan esta reacción quimica en diferentes posibilidades (moleculas con igual formula condensada y diferente formula desarrollada o con propiedades quimicas iguales y fisicas diferentes)
6) Ligasas: catalizan la reacción que permite la unión de 2 moleculas con hidrolisis simultanea y ATP.
3.-¿Como actua una enzima?
Una enzima incrementa la velocidad de reacción quimica pero sin modificar la constante de equilibrio ni el sentido de la reacción, es decir, sin variar las propiedades termodinamicas del sistema; la función de un catalizador consiste en disminuir la energia de activación, lo que conduce o acelera la reacción debido a que los reactantes pueden alcanzar mas facilmente el estado de transición.
4.-¿Que es una apoenzima?
Es la parte proteica de la enzima desprovista de los cofactores, cuando requieren cofactores para ser activadas la apoenzima es cataliticamente inactiva. La adición del cofactor a la apoenzima da lugar a la holoenzima.
5.-¿Que es una coenzima?
Son otros componentes de la enzima con bajo peso molecular termoestables y no proteicos unidas a la apoenzima. Y son requeridas por la enzima para su actividad.
6.-¿Que es cinetica enzimatica?
La cinetica estudia la velocidad de cambio entre el estado inicial de reactantes y productos y su estado final. La velocidad cambia constantemente a medida que se aproxima el equilibrio, siendo O en el equilibrio. la velocidad del cambio en la concentración del producto o del sustrato en función del tiempo, expresa la velocidad de la reacción.
En todos los procesos enzimaticos, la velocidad de la reacción depende de la concentración de enzima y de su sustrato. si se aumenta progresivamente la concentración de la enzima manteniendose constante la concentracion de sustrato se obtiene una relación directa y lineal.

jueves, 10 de abril de 2008

Saponificación

La saponificación es una reacción química entre un ácido graso (o un lípido saponificable, portador de residuos de ácidos grasos) y una base o álcali, en la que se obtiene como principal producto la sal de dicho ácido y la base. Estos compuestos tienen la particularidad de ser anfipáticos, es decir tienen una parte polar y otra apolar (o no polar), con lo cual pueden interactuar con sustancias de propìedades dispares. Por ejemplo, los jabones son sales de ácidos grasos y metales alcalinos que se obtienen mediante saponificación.

El método de saponificación industrial consiste en hervir la grasa en grandes calderas, añadiendo lentamente sosa cáustica (NaOH), agitandose continuamente la mezcla hasta que comienza esta a ponerse pastosa.

La reacción que tiene lugar es la saponificación y los productos son el jabón y la lejía residual que contiene glicerina:


Grasa + sosa = jabón + glicerina + lejía (agua y sosa)

Equilibrio Acido- Base

Las alteraciones del equilibrio ácido base (AB) son frecuentes en la Unidad de Terapia Intensiva (UTI) y cuando son extremas y se instalan rápidamente causan disfunción orgánica, incrementando la morbi-mortalidad. El modelo de Henderson-Hasselbalch no explica satisfactoriamente estas alteraciones en los pacientes críticamente enfermos. El abordaje de las alteraciones AB propuesto por Stewart fundamentado en las leyes de la conservación de la masa y electroneutralidad y explica que el origen del ion hidrógeno (H+) y por tanto del pH es la disociación del agua producida por incremento de la diferencia de iones fuertes (SID, Strong Ion Difference), la presión parcial de dióxido de carbono (pCO2) y la concentración total de ácidos débiles no volátiles (atot, total concentration of dissociated weak non-volatile acids). Hay tres modelos de abordaje de las alteraciones AB, el primero, de Henderson-Hasselbalch se fundamenta en la ley de la acción de la masa, tomando como variables independientes el bicarbonato (HCO3") y la pCO2, un abordaje diagnóstico sistematizado de este modelo es la Regla de Cinco, con la cual se pueden diagnosticar alteraciones AB simples, dobles y triples. El segundo modelo ha evolucionado hasta el concepto de concentración de H+ titulable del líquido extracelular extendido (ctH+ Ecf), definido como la cantidad de H adicionado o removido en relación al pH de referencia de 7.40, este modelo utiliza la ecuación de Van Slyke y el diagrama de Siggaard-Andersen para calcular y graficar respectivamente la alteración AB presente. El tercer modelo es el de Stewart, el cual se fundamenta en las leyes de la conservación de la masa y la electroneutralidad, tomando como variables independientes a la pCO2, SID y AToT, los cuales causan disociación del agua y como consecuencia H+. De este abordaje sobresalen los diagnósticos de acidosis metabólica hiperclorémica (AMH) y acidosis metabólica de aniones no medidos, la primera, secundaria a la reanimación con soluciones no balanceadas, y la segunda a sepsis.


Conceptos BásicosNeutro es el pH en el cual hay igual número de iones [H+] and iones [OH-]. El agua está más ionizada a la temperatura corporal que a temperatura ambiente; neutro es un pH 6.8 más que 7.0. Este es también el pH promedio dentro de la célula. El organismo mantiene la neutralidad (pH 6.8) dentro de la célula, donde ocurren la mayoría de los procesos bioquímicos, y mantiene la sangre a un pH de 7.4, el cual es 0.6 unidades de pH hacia el lado alcalino partiendo del pH neutro (Reeves and Rahn, 1979).

pH es el logaritmo negativo de la concentración de ion hidrógeno. Una definición completa requiere que el logaritmo sea definido como de base 10 y la concentración sea medida como la actividad en moles por litro. La forma de notación del pH es fuente de confusiones por lo que es mejor evitar los términos "aumento" y "disminución" y usar en su lugar "cambio ácido" y "cambio alcalino".

Logaritmo. Es de ayuda pensar en "poder". Así 103 = 1000 y log (1000) = 3. Esta es otra fuente de confusión en el equilibrio ácido-base y es el responsable de la impresión errónea de que el organismo mantiene estrechamente el control de su concentración de ion hidrógeno. (La tensión arterial o el pulso medidos con la notación logarítmica parecerían considerablemente estables). Cuando el pH cambia 0.3 unidades, por ejemplo, desde 7.4 a 7.1 la concentración de ion hidrógeno se duplica ( de 40 a 80 nmol/l).

Acido respiratorio y Acidosis Respiratoria. El Dióxido de Carbono es el ácido respiratorio- es el único ácido que puede ser exhalado. Estrictamente hablando el dióxido de carbono es un gas, no un ácido. El ácido carbónico solo se forma cuando se combina con agua. Sin embargo, la costumbre clínica es de considerar al dióxido de carbono y al ácido respiratorio como sinónimos. La Acidosis Respiratoria es una PCO2. elevada.

Acido Metabólico y Acidosis Metabólica. El término "ácidos metabólicos" incluye a todos los ácidos del cuerpo a excepción del dióxido de carbono. Los ácidos metabólicos no son eliminados por la respiración; ellos tienen que ser neutralizados, metabolizados, o excretados a través del riñón. Acidosis Metabólica es cuando el pH es más ácido que el apropiado para la PCO2. Esta definición enfatiza la importancia del componente respiratorio en el pH global. El pH es siempre un producto de dos componentes, respiratorio y metabólico, y el componente metabólico es juzgado, calculado, o computado de acuerdo a los efectos de la PCO2, por ejemplo, cualquier cambio inexplicable en el pH por la PCO2, indica una anormalidad metabólica.

Acidosis y Alcalosis. La Acidosis es una alteración que tiende a producir un pH ácido al menos que haya una alcalosis oponente dominante. La Alcalosis es lo opuesto y tiende a producir un pH alcalino al menos que exista una acidosis oponente dominante.

Bicarbonato. En las determinaciones ácido-base la concentración de ion bicarbonato(HCO3) (en miliequivalentes por litro) se calcula a partir de la PCO2 y del pH. Dado que se altera tanto en las alteraciones respiratorias y metabólicas (ver Fisiología), no es medida ideal de ninguna de ellas.

Exceso de Bases (BE) es una medida del nivel de ácido metabólico, y normalmente es cero. La base sanguínea (base total) es de unos 48 mmol/l dependiendo de la concentración de hemoglobina. Los cambios se expresan en términos de exceso o déficit. Es útil recordar que la frase " este paciente tiene un exceso de bases de menos diez" significa "este paciente tiene un exceso de ácido metabólico (acidosis) de 10 mEq/l." El exceso de base puede utilizarse para estimar la cantidad de tratamiento necesario para neutralizar la acidosis metabólica (o alcalosis).

El equilibrio ácido-base se define como "aquella situación de equilibrio establecido en el balance entre sustancias de carácter ácido y básico de la sangre como consecuencia de la interacción entre los sistemas respiratorios y metabólicos"

Los valores normales son:

Sangre arterial = 7.35 / 7.45

Sangre venosa = 7.31 / 7.41

Las alteraciones encontradas en el equilibrio ácido-base pueden ser de dos tipos:


Respiratorias: aquellas en los que la concentración de dióxido de carbono o ácido carbónico constituye el cambio primario del pH.


Metabólicas: por una alteración en la concentración de bicarbonato


Regulación del equilibrio ácido-base

Debido a los constantes procesos fisiológicos del organismo se generan diariamente una gran cantidad de sustancias de carácter ácidos y básicos susceptibles de alterar el equilibrio.

Dicha alteración se traduce en cambios de pH del organismo. Evitar estas variaciones es tarea de los tampones (sistemas amortiguadores) presentes en el organismo y son capaces de captar o ceder protones como respuesta a los cambios de acidez de los líquidos orgánicos.

La labor de estos tampones se desarrolla en los pulmones y riñones. En condiciones normales, el dióxido de carbono suele excretarse a través de los pulmones. Por su parte, los riñones eliminan mediante la excreción tubular los protones originados como consecuencia de las principales fuentes metabólicas (no respiratorias) y que son fundamentalmente la oxidación incompleta de grasas e hidratos de carbono y la oxidación del azufre y de los metabolitos que contienen fósforo.


Alteraciones del equilibrio ácido-base

La mayor parte de los métodos que se utilizan actualmente para determinar la existencia de un desequilibrio ácido-base en el organismo, están basados en la aplicación de la ecuación de Henderson-Hosselbach.

Para un ácido débil (HA)

[ HA ] [ H+ ] + [ A¬ ]

[ H+ ] = [ HA ]

[ A¬ ]

por lo tanto:

pH = pKa + log [ A¬ ]

[ HA ]

donde pKa = log 1

Ka

Esta expresión es considerada la ecuación "estándar" de Henderson-Hasselbach y puede ser aplicada en el caso particular para determinar las variaciones sufridas por el equilibrio ácido-base del organismo.

Concretamente, en el caso del ácido carbónico de la sangre, la reacción que tiene lugar en el plasma es:

[ H2O ] + [ CO2 ] [ H2CO3 ]

[ H2CO3 ] [ HCO3¬ ] + [ H+ ]

Aplicando la ecuación:

PH = pKa + log [ HCO3¬]

[ H2CO3 ]

Los protones que como consecuencia de un deteriorado proceso orgánico puedan ser liberados, son temporalmente tamponados por los distintos sistemas amortiguadores existentes en le organismo.

Cuando la cantidad de protones a neutralizar es excesiva pueden generarse alteraciones del equilibrio de distinta gravedad que, en ocasiones, llegan a ser incluso incompatibles con la vida. Estos desequilibrios pueden ser excesos o defectos y generan en el organismo dos estados denominados "acidosis y alcalosis"

Acidosis: es un exceso de protones en la sangre por encima de 44 nmol/l

Alcalosis: es un déficit de protones en la sangre por debajo de 35 nmol/l

Valoración clínica de las alteraciones del equilibrio ácido-base

Para poner de manifiesto la existencia en el organismo de una situación de acidosis o alcalosis no es suficiente con determinar el ácido carbónico presente en el plasma ya que:

un valor bajo de ácido carbónico plasmático puede ser debido tanto a una acidosis no primaria, como en una alcalosis primaria.

un valor alto de ácido carbónico en el plasma puede tener su origen en una alcalosis no primaria como en una acidosis primaria.

miércoles, 9 de abril de 2008

Formacion ATP

El ATP

Las células requieren un continuo suministro de energía. Esta es necesaria para la síntesis de moléculas complejas, la ejecución de trabajo mecánico y el transporte de sustancias a través de sus membranas. La energía es transferida desde las reacciones químicas que la acumulan a las que las consumen, mediante una molécula especial, el ATP (Fig. A). El término ATP es el acrónimo de adenosina trifosfato, con la F de fosfato reemplazada por la P del símbolo químico del fósforo (los intentos de traducir el ATP al castellano llamándolo ATF fracasaron). En las células, la energía que recibe o cede el ATP es la contenida en el enlace entre su último fosfato y el resto de la molécula. El enlace se forma durante la síntesis de ATP: incorporan así energía, la que se cede cuando el enlace se escinde.

El trifosfato de adenosina (ATP) o adenosín trifosfato es una molécula que consta de una purina (adenina), un azúcar (ribosa), y tres grupos fosfato. Gran cantidad de energía para las funciones biológicas se almacena en los enlaces de alta energía que unen los grupos fosfato y se liberan cuando uno o dos de los fosfatos se separan de las moléculas de ATP. El compuesto resultante de la pérdida de un fosfato se llama difosfato de adenosina, adenosín difosfato o ADP; si se pierden dos se llama monofosfato de adenosina, adenosín monofosfato o AMP, respectivamente.

Sistemas de transporte mitocondrial

Sistemas de transporte mitocondrialEn el proceso citoplásmico de la glucólisis se produce NADH. Estos equivalentes reductores deben poder entrar a la mitocondria para ser utilizados en la cadena de transporte de electrones para su oxidación aerobica. Así mismo, los metabolitos mitocondriales como el oxaloacetato y acetil-CoA, precursores de la biosíntesis mitocondrial de glucosa y ácidos grasos respectivamente, deben poder abandonar la mitocondria. En la mitocondria, se produce una enorme cantidad de energía en forma de ATP, después de la ocurrencia de la fosforilación oxidativa, esta importante molécula energética, debe abandonar la mitocondria para poder intervenir en múltiples reacciones citoplásmicas.

El ATP generado en la fosforilación oxidativa a partir de ADP y Pi se utiliza en el citoplasma; el Pi así formado, retorna al interior mitocondrial vía un simportador Pi-H+ alimentado por el componente D pH del gradiente electroquímico de protones. Entonces el gradiente del potencial electroquímico generado por el bombeo redox de protones del transporte electrónico, es el responsable de mantener los altos niveles mitocondriales de ADP y Pi, además de proveer de la energía libre para sintetizar ATP.


Sistema de transporte de Ca2+

El Ca2+ al igual que el cAMP es un segundo mensajero, por lo tanto, su concentración citosólica debe ser controlada de manera precisa. La mitocondria, el retículo endoplásmico y los espacios extracelulares actúan como reservorios de Ca2+. En el retículo endoplásmico y la membrana plasmática, existen bombas específicas denominadas Ca2+-ATPasas que funcionan en contra de los gradientes de concentración utilizando energía derivada de la hidrólisis de ATP. En la mitocondria, el sistema de transporte de Ca2+ ocurre de la siguiente manera:

Los sistemas de transporte en la membrana interna mitocondrial regulan la entrada y salida de Ca2+. La entrada de Ca2+ es promovida por el gradiente transmembranal de la membrana interna mitocondrial que es negativo al interior, lo cual atrae a los cationes como el Ca2+. La velocidad de entrada varía con la concentración externa de Ca2+ porque la Km para el cation por este sistema de transporte es mayor que la concentración de Ca2+ en el citoplasma. La salida del Ca2+ es controlada independientemente por el gradiente de H+ generado por el transporte de electrones en la membrana interna o en las mitocondrias de corazón por el gradiente de Na+. El Ca2+ existe en la matriz solo por el intercambio de H+ (o Na+), de tal manera que el sistema es una antiportador. Este proceso de intercambio normalmente opera a su máxima velocidad. La mitocondria entonces actúa como un amortiguador del Ca2+ citoplásmico. Si la concentración de Ca2+ aumenta en el citoplasma, la velocidad de entrada a la mitocondria se incrementa mientras que la salida permanece constante causando que la concentración del Ca2+ mitocondrial se incremente mientras que la citosólica regresa a su nivel original y viceversa.

Transporte de Electrones

El flujo de electrones en las reacciones de oxido-reducción es responsable, directa o indirectamente de todo el trabajo realizado en los organismos vivientes. En los organismos no fotosintéticos, las fuentes de electrones son compuestos reducidos (los alimentos); en los organismos fotosintéticos, el donador inicial de electrones es una especie química excitada por la absorción de la luz solar. El flujo de los electrones en el metabolismo es un proceso complejo, los electrones se mueven a partir de varios metabolitos intermedios a acarreadores de electrones especializados en las reacciones catalizadas por enzimas. Posteriormente, los acarreadores donan los electrones a aceptores con elevadas afinidades por los electrones, este último proceso, genera energía. Las células contienen una variedad de transductores de energía, los cuales convierten la energía del flujo de electrones en trabajo.

El transporte de electrones, es la fuente principal de energía para las actividades celulares, libera grandes cantidades de energía libre, la mayor parte de la cual se almacena en forma de ATP en la fosforilación oxidativa. Las enzimas que catalizan el este proceso, son generalmente más complejas tanto estructuralmente como en su mecanismo catalítico que las enzimas de las otras vías metabólicas, y por tanto son menos conocidas. La mayoría están en la membrana interna mitocondrial, por lo cual es complicada su extracción y purificación. Tampoco es bien conocido cómo la liberación de energía libre que se produce durante el transporte de electrones se conserva y transforma en la energía del enlace fosfato durante la fosforilación oxidativa y las síntesis del ATP. Por lo anterior, estas enzimas son un modelo de estudio muy atractivo.

Todos los siguientes procesos: el transporte de electrones, la energía libre de la transferencia de electrones del NADH y FADH2 al O2 vía centros redox unidos a proteínas, está acoplada a la síntesis de ATP.

Maltosa

La maltosa o azúcar de malta es un disacárido formado por dos glucosas unidas por un enlace glucosidico producido entre el oxigeno del primer carbón anomerico (proveniente de -OH) de una glucosa y el oxigeno perteneciente al cuarto carbón de la otra. Por ello este compuesto también se llama alfa glucopiranosil(1-4)alfa glucopiranosa. Al producirse dicha unión se desprende una molécula de agua y ambas glucosas quedan unidas mediante un oxígeno monocarbonílico que actúa como puente.

La maltosa presenta en su estructura el OH hemiacetálico por lo que es un azúcar reductor, da la reacción de Maillard y la reacción de Benedict. A la maltosa se le llama también azúcar de malta, ya que aparece en los granos de cebada germinada. Se puede obtener mediante la hidrólisis del almidón y glucógeno. Su fórmula es C12H22O11.

Obtenido de "http://es.wikipedia.org/wiki/Maltosa"

Lactosa

LactosaEs un disacárido formado por la unión de una glucosa y una galactosa. Concretamente intervienen una β-galactopiranosa y una α-glucopiranosa unidas por los carbonos 1 y 4respectivamente. Al formarse el enlace entre los dos monosacáridos se desprende una molécula de agua. Además este compuesto posee el OH hemiacetálico por lo que da la reacción de Benedict. A la lactosa se le llama también azúcar de la leche ya que aparece en la leche de las hembras de los mamíferos en una proporción del 4-5%. La leche de camella, por ejemplo, es rica en lactosa. Cristaliza con una molécula de agua de hidratación, con lo que su fórmula es: C12H22O11·H2O, luego se la puede también llamar lactosa monohidrato. Su peso molecular es 360,32 g/mol.

En los humanos es necesaria la presencia de la enzima lactasa para la correcta absorción de la lactosa. Cuando el organismo no es capaz de asimilar correctamente la lactosa aparecen diversas molestias cuyo origen se denomina intolerancia a la lactosa.

La lactosa: alfa-D-galactopiranosil-beta-D-glucopiranosa

La intolerancia a la lactosa se presenta cuando el intestino delgado no produce suficiente enzima lactasa. El organismo de los bebés produce esta enzima de tal forma que pueden digerir la leche, incluyendo la leche materna. Antes de que los seres humanos se convirtieran en granjeros y procesaran productos lácteos, la mayoría de las personas no seguía consumiendo leche en su vida, de tal manera que no producían lactasa después de las primeras etapas de la infancia.

Las personas pertenecientes a culturas en las cuales el consumo de leche y de productos lácteos en los adultos se presentó primero tienen menos probabilidades de sufrir intolerancia a la lactosa que aquellos pertenecientes a pueblos en donde el consumo de productos lácteos comenzó más recientemente. Como resultado de esto, la intolerancia a la lactosa es más común en poblaciones asiáticas, africanas, afroamericanas, nativos americanos y pueblos del Mediterráneo que en las poblaciones del norte y occidente de Europa.

La intolerancia a la lactosa puede comenzar en diversos momentos en la vida. En las personas de raza blanca, generalmente comienza a afectar a los niños mayores de 5 años; mientras que en las personas de raza negra, la afección se presenta a menudo hasta a los dos años de edad.

Cuando las personas con intolerancia a la lactosa comen o beben productos lácteos, pueden presentar síntomas como distensión abdominal, exceso de gases intestinales, náuseas, diarrea y cólicos abdominales.

La intolerancia a la lactosa no es peligrosa y es muy común en los adultos. Aproximadamente 30 millones de adultos estadounidenses tienen algún grado de intolerancia a la lactosa a la edad de 20 años.

La intolerancia a la lactosa se observa algunas veces en bebés prematuros y los bebés nacidos a término generalmente no muestran signos de esta afección hasta que tienen al menos 3 años de edad.

Sacarosa

La sacarosa o azúcar común es un disacárido formado por alfa-glucosa y beta-fructosa.

Su nombre químico es:

alfa-D-glucopiranosil(1->2)-beta-D-fructofuranósido.
Su fórmula química es:(C12H22O11)

Es un disacárido que no tiene poder reductor sobre el licor de Fehling.

El azúcar de mesa es el edulcorante más utilizado para endulzar los alimentos y suele ser sacarosa. En la naturaleza se encuentra en un 20% del peso en la caña de azúcar y en un 15% del peso de la remolacha azucarera, de la que se obtiene el azúcar de mesa. La miel también es un fluido que contiene gran cantidad de sacarosa parcialmente hidrolizada.


HIDRATOS DE CARBONO

Incluímos en este grupo el almidón, los azúcares (sacarosa, glucosa o dextrosa y lactosa) y los ácidos orgánicos (cítrico, fumárico y propiónico). Son productos energéticos, sin contenido alguno en proteína o minerales y que se utilizan en pequeñas cantidades en alimentación animal por su buena digestibilidad (lactosa y glucosa), sus propiedades edulcorantes (azúcares) o por su poder acidificante (lactosa y ácidos orgánicos). El destino principal son los piensos de iniciación de lechones.

La sacarosa o azúcar de mesa se extrae de la caña de azúcar o de la remolacha azucarera. El rendimiento de extracción de esta última es de alrededor de 160 kg de azúcar por cada tonelada de materia prima original. Su principal uso es como edulcorante en piensos de iniciación. Los enzimas digestivos hidrolizan la sacarosa a glucosa y fructosa pero el equipamiento enzimático del lechón es insuficiente durante los 10-12 primeros días de vida, por lo que el uso de sacarosa debe ser moderado (<5%). A partir de esta edad, su digestibilidad es cercana al 100%. Los rumiantes carecen de sacarasa. Por ello no es recomendable el uso de este azúcar en sustitutivos lácteos o piensos de iniciación de animales prerumiantes.

Glucolisis

La glucólisis (del inglés glycolysis), es la vía metabólica encargada de oxidar la glucosa y así obtener energía para la célula. Ésta consiste de 10 reacciones enzimáticas que convierten a la glucosa en dos moléculas de piruvato, la cual es capaz de seguir otras vías metabólicas y así continuar entregando energía al organismo.[1]

Es la vía inicial del catabolismo(degradación) de carbohidratos, y tiene tres funciones principales:

La generación de moléculas de alta energía (ATP y NADH) como fuente de energía celular en procesos de respiración aeróbica (presencia de oxígeno) y anaeróbica (ausencia de oxígeno).
La generación de Piruvato que pasará al Ciclo de krebs, como parte de la respiración aeróbica.
La producción de intermediarios de 6 y 3 carbonos, los que pueden ser ocupados por otros procesos celulares.
Cuando hay ausencia de oxígeno (anoxia o hipoxia), luego que la glucosa ha pasado por este proceso, el piruvato sufre de fermentación, una segunda vía de adquisición de energía que, al igual que la glucólisis, es poco eficiente. El tipo de compuesto obtenido de la fermentación suele variar con el tipo de organismo. En los animales, el piruvato fermenta a lactato y en levadura, el piruvato fermenta a etanol.

La glucolisis tiene lugar en el citoplasma celular. Consiste en una serie de diez reacciones, cada una catalizada por una enzima determinada, que permite transformar una molécula de glucosa en dos moléculas de un compuesto de tres carbonos, el ácido pirúvico.


La glucólisis es un conjunto de reacciones que transforman la glucosa en piruvato. Es una vía casi universal. La glucólisis es una vía íntegramente citosólica.

Se distinguen 3 partes:

-Entrada de glucosa de todas las células. Sobretodo a músculos e hígado. Es el primer punto de control de la vía.

-Una vez ha entrado dentro del hepatocito:

Se puede estructurar en 2 etapas:

1. Pasar de Glucosa a Fructosa-1,6-difosfato.

2. Pasar de Fructosa-1,6-difosfato a dihidroxiacetona y gliceraldehido.

La primera fase es una fase de alteración química para dejar la molécula útil para la célula.

Glucosa

Glucosa o dextrosa, es una forma de azúcar encontrada en las frutas y en la miel. Es un monosacárido con la misma fórmula empírica que la fructosa pero con diferente estructura. Es una hexosa, es decir, que contiene 6 átomos de carbono.

Todas las frutas naturales tienen cierta cantidad de glucosa (a menudo con fructosa), que puede ser extraída y concentrada para hacer un azúcar alternativo. Pero a nivel industrial tanto la glucosa líquida (jarabe de glucosa) como la dextrosa (glucosa en polvo) se obtienen a partir de la hidrólisis enzimática de almidón de cereales (generalmente trigo o maíz).

Molécula , (C6H12O6) es una Aldohexosa (Aldehído pentahidroxilado) y un monosacárido. La glucosa es el 2º compuesto orgánico más abundante de la naturaleza,despuès de la celulosa. Es la fuente principal de energía de las células, mediante la degradación catabólica, y es el componente principal de polímeros de importancia estructural como la celulosa y de polímeros de almacenamiento energético como el almidón.

En su forma (D-Glucosa), sufre una ciclación hacia su forma hemiacetálica para lograr sus formas furano y pirano (D-glucofuranosa y D-glucopiranosa) que a su vez presentan anómeros Alpha y Beta. Estos anómeros no presentan diferencias de composición estructural, pero si difieren de características físicas y químicas. La D-(+)-glucosa es uno de los compuestos más importantes para los seres vivos, incluyendo a seres humanos.

En su forma ß -D-glucopiranosa, una molécula de glucosa se une a otra gracias a los -OH de sus carbonos 1-4 para formar Celobiosa[1-4] a través de un enlace ß , y al unirse varias de estas moléculas, forman Celulosa.

La glucosa es la principal fuente de energía para el metabolismo celular. Se obtiene fundamentalmente a través de la alimentación, y se almacena principalmente en el hígado, el cual tiene un papel primordial en el mantenimiento de los niveles de glucosa en sangre (glucemia). Para que esos niveles se mantengan y el almacenamiento en el hígado sea adecuado, se precisa la ayuda de la insulina, sustancia producida por el páncreas. Cuando la insulina es insuficiente, la glucosa se acumula en sangre, y si esta situación se mantiene, da lugar a una serie de complicaciones en distintos órganos. Esta es la razón principal por la que se produce aumento de glucosa en sangre, pero hay otras enfermedades y alteraciones que también la provocan.

La Glucosa es un azúcar que es utilizado por los tejidos como forma de energía al combinarlo con el oxígeno de la respiración. Cuando comemos el azúcar en la sangre se eleva, lo que se consume desaparece de la sangre, para ello hay una hormona reguladora que es la insulina producida por el páncreas (islotes pancreáticos). Esta hormona hace que la glucosa de la sangre entre en los tejidos y sea utilizada en forma de glucógeno, aminoácidos, y ácidos grasos. Cuando la glucosa en sangre está muy baja, en condiciones normales por el ayuno, se secreta otra hormona llamada glucagón que hace lo contrario y mantiene los niveles de glucosa en sangre.

El tejido más sensible a los cambios de la glucemia es el cerebro, en concentraciones muy bajas o muy altas aparecen síntomas de confusión mental e inconsciencia.

Ciclo de Krebs

El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es una serie de reacciones químicas que forman parte de la respiración celular en todas las células aerobias, es decir que utilizan oxígeno. En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de hidratos de carbono, ácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).

El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales el ciclo de Krebs supone la segunda. En la primera etapa los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucolisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.

El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una vía anfibólica, es decir, catabólica y anabólica al mismo tiempo.

Generalidades del ciclo de Krebs
El ciclo de Krebs, es la ruta central común para la degradación de los restos acetilo (de 2 átomos de C) que derivan de los glúcidos, ácidosgrasos y aminoácidos. Es una ruta universal, catalizada por un sistema multienzimático que acepta los grupos acetilo del acetil-CoA como combustible, degradándolo hasta CO2 y átomos de Hidrógeno, que son conducidos hasta el O2 que se reduce para formar H2O (en la cadena de transporte de electrones).

En condiciones anaerobias, las células animales reducen el piruvato a lactato, en las levaduras a etanol. Por el contrario, en condiciones aerobias, el piruvato ingresa a la matriz mitocondrial y es convertido a acetil-Coenzima A (AcCoA) para llevar estos Carbonos a su estado de oxidación total en el ciclo del ácido cítrico.

El ciclo del ácido cítrico, considerado el embudo del metabolismo, consiste ocho reacciones enzimáticas, todas ellas mitocondriales en los eucariontes. El ciclo del ácido cítrico es la vía central del metabolismo aerobio: es la vía oxidativa final en el catabolismo de los carbohidratos, ácidos grasos y aminoácidos, además es una fuente importante de intermediarios de vías biosintéticas. En muchas células la acción acoplada del ciclo del ácido cítrico y la cadena de transporte de electrones son responsables de la mayoría de la energía producida.

Citocromo P-450

El citocromo P-450 (P-450) es el principal responsable del metabolismo
oxidativo de los xenobióticos. No se trata de un único enzima, sino
que en realidad es una familia de hemoproteínas presentes en numerosas
especies, desde bacterias a mamíferos, y de las que ya se han identificado
más de 2000 isoformas diferentes. Todos los P-450s conocidos se nombran
siguiendo un criterio común y se agrupan en familias y subfamilias
en función de la similitud en la secuencia del ADN que los codifica. Las
familias 1, 2 y 3 están constituidas por enzimas encargados de la biotransformación
de xenobióticos, mientras que el resto de familias incluyen
P-450s que intervienen en la biosíntesis y el metabolismo de compuestos
endógenos. Una de las características más significativas de los
P-450 que metabolizan xenobióticos es su baja especificidad, lo que permite
que sean capaces de metabolizar un número casi ilimitado de substratos,
principalmente a través de reacciones de oxidación, pero también
de reducción e hidrólisis. Las oxidaciones catalizadas por el P-450 son
reacciones de monooxigenación dependientes de NADPH y para las que
utiliza oxígeno molecular. Como consecuencia de estas reacciones el P-
450 acelera la eliminación del organismo de gran número de fármacos y
compuestos tóxicos, pero también es el responsable de la activación de
toxinas o precarcinógenos. En el hombre, los P-450s están ampliamente
distribuidos por todo el organismo, si bien el hígado es el órgano con mayor
expresión de estos enzimas. Su expresión está regulada por factores
29
genéticos (algunos presentan polimorfismos genéticos), fisiopatológicos
(regulación hormonal, enfermedades) o ambientales (factores nutricionales,
inducción, inhibición). Por esta causa, sus niveles hepáticos varían
extraordinariamente entre diferentes individuos, lo que justifica las notables
diferencias que, en ocasiones, se observan en el metabolismo de fármacos
y xenobióticos y, en última instancia, la variabilidad en la respuesta
farmacológica o la diferente susceptibilidad a la acción de tóxicos o carcinógenos.

Enzimas Citocromo P450
Fueron descubiertas en los años 40. Y debido a una particularidad en su absorción, presentaban en los primeros estudios se observaba un espectro de absorción con un máximo en la frecuencia de 450 nanometros en el complejo que se generaba con monóxido de carbono. Además se observó que el pigmento era el componente final de una cadena transportadora de electrones que catalizaba oxidación de sustratos, esto les dio su nombre.

Son una familia de hemoproteínas, localizadas en las membranas del retículo endoplásmico de los hepatocitos y de otras células corporales. Como hemoproteína consisten de una parte proteica (apoproteína) y un grupo heme prostético (Figura 1) (Fossi et al., 1994)

En un principio los diferentes laboratorios obtuvieron resultados distintos y se creó cierta confusión con respecto a las funciones y características de las enzimas citocromo P450. Esto fue aclarado cuando se determinó que existían varios tipos de moléculas de citocromos P450 se podían encontrar en individuos de una misma especie (Guengerich,1993).

Las enzimas citocromo P450 son los componentes terminales del sistema enzimático oxigenasa de función mixta (MFO) (Livingstone, 1993).

Se pueden ubicar principalmente en el hígado pero también en glándulas y tejidos del resto del cuerpo (testículos, glándulas adrenales) o tejidos involucrados en el procesamiento de alimentos (Guengerich, 1993; Livingstone, 1993).

Funciones que cumplen las Enzimas Citocromo P450
Las enzimas citocromo P450 son un grupo promiscuamente activo molecularmente. En la actualidad el número de sustratos conocidos para estas enzimas está por sobre mil. Entre las funciones más importantes que realizan:

Funciones detoxificadoras, eliminando sustancias exógenas, es decir, sustancias que no son sintetizadas en el propio organismo. Esto se logra agregando grupos funcionales, hidrosolubles a compuestos de carácter lipofílico. Entre éstos: drogas, sustancias carcinogénicas, pesticidas, etc (ver figura 3).
Funciones de metabolismo endógeno, es decir, la degradación de sustancias del propio organismo. Como ejemplos de éstos: esteriodes, sales biliares, vitaminas liposolubles (A y D), alcaloides endógenos, etc.
Involucrados en la síntesis de óxido nítrico gaseoso simple, usado, entre otras funciones, como toxina anti-patógeno.
En algunos organismos sirve como mecanismo de defensa ante el ataque de alcaloides tóxicos de plantas y les aporta, por lo tanto, un alimento abundante que no es apetecible por otros organismos.

Estructura de las Enzimas Citocromo P450
Utilizando la figura 1 como referencia simplificada de la estructura de una enzima citocromo P450 se puede señalar que ésta posee sitios para atrapar dos moléculas: una de oxígeno (O2) en el sitio heme y otra molécula, el sustrato que modifica, que se une justo por sobre el grupo heme. En el caso de la figura 2, corresponde a la enzima citocromo P450 de una bacteria de nombre Pseudomonas putida, se observa que está formada además por a -hélices (formas espirales) y hojas b (estructuras planas), además de segmentos no tan organizados (en forma de hilos en la figura).

Numerosos genes citocromo P450 codifican diferentes versiones de las enzimas. Para fines prácticos, estos genes han sido agrupados en diferentes familias

(números 1, 2, etc.), subfamilias (letras A, B, etc.), y enzimas individuales (números 1, 2, etc.). Por ejemplo la enzima citocromo P450 inducida por el 2,3,7,8-tetraclorodibenzo-p-dioxina (dioxina) se le da la designación P4501A1 (Shugart, 1996).

Colesterol

El colesterol es un lípido que se encuentra en los tejidos corporales y en el plasma sanguíneo de los vertebrados. Se presenta en altas concentraciones en el hígado, médula espinal, páncreas y cerebro. El nombre de «colesterol» procede del griego kole (bilis) y stereos (sólido), por haberse identificado por primera vez en los cálculos de la vesícula biliar por Michel Eugène Chevreul quien le dio el nombre de «colesterina».

Cuando el colesterol total y la LDL (proteína que transporta el colesterol del hígado a los tejidos, es conocida como el colesterol malo) están elevados, la probabilidad de sufrir una complicación vascular aumenta. La figura muestra la relación que hay entre el exceso de colesterol sanguíneo y la probabilidad de sufrir un evento coronario. Si con un colesterol de 200 el riesgo es de 1, una cifra de 250 duplica el riesgo y la de 300 lo cuadruplica.



¿Qué es la diferencia entre el colesterol 'bueno' y el 'malo'?

El colesterol y otras grasas no se pueden disolver en la sangre. Deben transportarse de y hacia las células por acarreadores especiales llamados lipoproteínas. Existen dos tipos que necesita conocer. Las lipoproteínas de baja densidad (LDL) son conocidas como el colesterol "malo". Demasiado colesterol LDL puede tapar sus arterias, lo que aumenta su riesgo de tener un ataque al corazón o un accidente cerbrovascular. Las lipoproteínas de alta densidad (HDL) son conocidas como el colesterol "bueno". Su organismo produce el colesterol HDL para su protección. Este acarrea el colesterol lejos de sus arterias. Los estudios sugieren que los altos niveles del colesterol HDL reducen los riesgos de un ataque cardiaco.

¿Por qué se considera "malo" el colesterol LDL?
Cuando demasiado colesterol LDL circula en la sangre, éste puede poco a poco ir creando una capa en las paredes internas de las arterias que alimentan al corazón y al cerebro. En conjunto con otras sustancias puede formar una placa, un depósito duro y grueso que puede tapar esas arterias. Este padecimiento se conoce como aterosclerosis. Si un coágulo se forma y bloquea una arteria ya estrecha, éste puede provocar un ataque cardiaco o un accidente cerebrovascular. Los niveles de colesterol HDL y LDL en la sangre se miden para evaluar los riesgos de tener un ataque cardiaco. El colesterol LDL de menos de 100 mg/dL es el nivel ideal. Menos de 130 mg/dL es casi lo ideal para la mayoría de las personas. Un nivel alto de LDL (más de 160 mg/dL o 130 mg/dL o más si tiene dos o más factores de riesgo de una enfermedad cardiovascular) refleja un aumento en el riesgo de una enfermedad cardiaca. Esa es la razón por la cual el colesterol LDL se denomina con frecuencia colesterol "malo".

¿Por qué se considera "bueno" el colesterol HDL?
Alrededor de un tercio a un cuarto del colesterol en la sangre es transportado por lipoproteínas de alta densidad (HDL). El colesterol HDL se conoce como colesterol "bueno" debido a que un alto nivel de éste parece proteger contra un ataque cardiaco. (Los niveles bajos de colesterol HDL [menos de 40 mg/dL] aumentan el riesgo de tener una enfermedad cardiaca.) Los expertos médicos piensan que las lipoproteínas de alta densidad (HDL) tienden a llevarse el colesterol de las arterias al hígado, para que sea excretado del organismo. Algunos expertos piensan que la HDL retira el exceso de colesterol de las placas en las arterias, y por ello retrasa la acumulación.

Enlace Peptidico

Los péptidos están formados por la unión de aminoácidos mediante un enlace peptídico. El enlace peptídico tiene lugar mediante la pérdida de una molécula de agua entre el grupo amino de un aminoácido y el carboxilo de otro.
Podemos seguir añadiendo aminoácidos al péptido, porque siempre hay un extremo NH2 terminal y un COOH terminal.
Para nombrar el péptido se empieza por el NH2 terminal por acuerdo. Si el primer aminoácido de nuestro péptido fuera alanina y el segundo serina tendríamos el péptido Alanil-serina.

En las proteínas, los aminoácidos están unidos uno seguido de otro, sin ramificaciones, por medio del enlace peptídico, que es un enlace amido entre el grupo a-carboxilo de un aminoácido y el grupo a-amino del siguiente. Este enlace se forma por la deshidratación de los aminoácidos en cuestión. Esta reacción es también una reacción de condensación, que es muy común en los sistemas vivientes.

Proteinas

Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios proteo, por la cantidad de formas que pueden tomar.

Cada célula en el cuerpo humano contiene proteína. La proteína es una parte muy importante de la piel, los músculos, órganos y glándulas. La proteína también se encuentra en todos los líquidos corporales, excepto la bilis y la orina.

Uno necesita proteína en la dieta para ayudarle al cuerpo a reparar células y producir células nuevas. La proteína también es importante para el crecimiento y el desarrollo durante la infancia, la adolescencia y el embarazo.

Las proteínas son los materiales que desempeñan un mayor numero de funciones en las células de todos los seres vivos. Por un lado, forman parte de la estructura básica de los tejidos (músculos, tendones, piel, uñas, etc.) y, por otro, desempeñan funciones metabólicas y reguladoras (asimilación de nutrientes, transporte de oxígeno y de grasas en la sangre, inactivación de materiales tóxicos o peligrosos, etc.). También son los elementos que definen la identidad de cada ser vivo, ya que son la base de la estructura del código genético (ADN) y de los sistemas de reconocimiento de organismos extraños en el sistema inmunitario.

Lipidos

Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, aunque las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).

Los lípidos son biomoléculas orgánicas formadas básicamente por carbono e hidrógeno y generalmente también oxígeno; pero en porcentajes mucho más bajos. Además pueden contener también fósforo, nitrógeno y azufre .

Es un grupo de sustancias muy heterogéneas que sólo tienen en común estas dos características:

Son insolubles en agua
Son solubles en disolventes orgánicos, como éter, cloroformo, benceno, etc.

Carbohidratos

Los carbohidratos, también llamados glúcidos, se pueden encontrar casi de manera exclusiva en alimentos de origen vegetal. Constituyen uno de los tres principales grupos químicos que forman la materia orgánica junto con las grasas y las proteínas.

Los glúcidos, mal denominados hidratos de carbono o carbohidratos, son una clase básica de compuestos químicos en bioquímica. Son la forma biológica primaria de almacenamiento o consumo de energía; otras formas son las grasas y las proteínas.

El término hidrato de carbono o carbohidrato es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino de átomos de carbono unidos a otros grupos funcionales químicos. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero=1,2,3... según el número de átomos). De aquí el término "carbono-hidratado" se haya mantenido, si bien posteriormente se vio que otras moléculas con las mismas características químicas no se corresponden con esta fórmula.

Los carbohidratos, hidratos de carbono y también simplemente azúcares. En su composición entran los elementos carbono, hidrógeno y oxígeno, con frecuencia en la proporción Cn(H20)n, por ejemplo, glucosa C6(H2O)6 de aquí los nombres carbohidratos o hidratos de carbono.


Estos compuestos, abarcan sustancias muy conocidas y al mismo tiempo, bastante disímiles, azúcar común, papel, madera, algodón, son carbohidratos o están presentes en ello en una alta proporción.

Aminoácidos

Un aminoácido es una biomolécula orgánica formada por un carbono unido a un grupo carboxil, un grupo amino, un hidrógeno y una cadena R de composición variable según la cual se conocen 20 tipos de aminoácidos diferentes. En los aminoácidos naturales, el grupo amino y el grupo carboxil se unen al mismo carbono que recibe el nombre de alfa asimétrico...

Unión de varios aminoácidos da lugar a cadenas llamadas péptidos. Se hablará de proteína cuando la cadena polipeptídica supere los 50 aminoácidos o el peso molecular total supero los 5000. Existen aproximadamente 20 aminoácidos distintos componiendo las proteínas. La unión química entre aminoácidos en las proteínas se produce mediante un enlace peptídico. Ésta reacción ocurre de manera natural en los ribosomas, tanto del retículo endoplasmático como del citosol.

sábado, 16 de febrero de 2008

pKa

pKa es parecido al pH, es la fuerza que tienen las moléculas de disociarse (es el logaritmo negativo de la constante de disociación de un ácido débil).pKa


Una forma conveniente de expresar la relativa fortaleza de un ácido es mediante el valor de su pKa, que permite ver de una manera sencilla en cambios pequeños de pKa los cambios asociados a variaciones grandes de Ka. Valores pequeños de pKa equivalen a valores grandes de Ka (constante de disociación) y, a medida que el decrece, la fortaleza del ácido aumenta.

pH

En 1909 el químico danés Sørensen definió el potencial Hidrógeno (pH) como el logaritmo negativo de la actividad de los iones hidrógeno.

Desde entonces, el término pH ha sido universalmente utilizado por la facilidad de su uso, evitando así el manejo de cifras largas y complejas. En disoluciones diluidas en lugar de utilizar la actividad del ion hidrógeno, se le puede aproximar utilizando la concentración molar del ion hidrógeno.
Por ejemplo, una concentración de [H+] = 1 × 10–7 M (0,0000001) es simplemente un pH de 7 ya que : pH = –log[10–7] = 7

Algunos valores comunes del pH Sustancia/Disolución pH:
Disolución de HCl 1 M 0,0
Jugo gástrico 1,5
Jugo de limón 2,4
Refresco de cola 2,5
Vinagre 2,9
Jugo de naranja o manzana 3,0
Cerveza 4,5
Café 5,0
Té 5,5
Lluvia ácida < 5,6
Saliva (pacientes con cáncer) 4,5 a 5,7
Orina 5,5-6,5
Leche 6,5
Agua pura 7,0
Saliva humana 6,5 a 7,4
Sangre 7,35 a 7,45
Agua de mar 8,0
Jabón de manos 9,0 a 10,0
Amoníaco 11,5
Hipoclorito de sodio 12,5
Hidróxido sódico 13,5

El pH típicamente va de 0 a 14 en disolución acuosa, siendo ácidas las disoluciones con pH menores a 7, y básicas las que tienen pH mayores a 7. El pH = 7 indica la neutralidad de la disolución (siendo el disolvente agua). Se considera que p es un operador logarítmico sobre la concentración de una solución: p = –log[...] , también se define el pOH, que mide la concentración de iones OH-.

Puesto que el agua está disociada en una pequeña extensión en iones OH– y H+, tenemos que:

Kw = [H+][OH–]=10–14
en donde [H+] es la concentración de iones de hidrógeno, [OH-] la de iones hidróxido, y Kw es una constante conocida como producto iónico del agua.

Por lo tanto,

log Kw = log [H+] + log [OH–]

–14 = log [H+] + log [OH–]

14 = –log [H+] – log [OH–]

pH + pOH = 14

Por lo que se puede relacionar directamente el valor del pH con el del pOH.

En disoluciones no acuosas, o fuera de condiciones normales de presión y temperatura, un pH de 7 puede no ser el neutro. El pH al cual la disolución es neutra estará relacionado con la constante de disociación del disolvente en el que se trabaje.

Medida del pH

El valor del pH se puede medir de forma precisa mediante un potenciómetro, también conocido como pHmetro, un instrumento que mide la diferencia de potencial entre dos electrodos: un electrodo de referencia (generalmente de plata/cloruro de plata) y un electrodo de vidrio que es sensible al ión hidrógeno.

También se puede medir de forma aproximada el pH de una disolución empleando indicadores, ácidos o bases débiles que presentan diferente color según el pH, como la Fenolftaleína. Generalmente se emplea papel indicador, que se trata de papel impregnado de una mezcla de indicadores.

A pesar de que muchos potenciómetros tienen escalas con valores que van desde 1 hasta 14, los valores de pH pueden ser menores que 1 y mayores que 14.
Un pH igual a 7 es neutro, menor que 7 es ácido y mayor que 7 es básico a 25ºC. A distintas temperaturas, el valor de pH neutro puede variar debido a la constante de equilibrio del agua (Kw).

El Agua

El agua cubre el 72% de la superficie del planeta Tierra y representa entre el 50% y el 90% de la masa de los seres vivos. Es una sustancia relativamente abundante aunque sólo supone el 0,022% de la masa de la Tierra. Se puede encontrar esta sustancia en prácticamente cualquier lugar de la biosfera y en los tres estados de agregación de la materia: sólido, líquido y gaseoso.
Se halla en forma líquida en los mares, ríos, lagos y océanos; en forma sólida, nieve o hielo, en los casquetes polares, en las cumbres de las montañas y en los lugares de la Tierra donde la temperatura es inferior a cero grados Celsius; y en forma gaseosa se halla formando parte de la atmósfera terrestre como vapor de agua.
Importancia y distribución
Es fundamental para todas las formas de vida conocida. Los humanos consumen agua potable. Los recursos naturales se han vuelto escasos con la creciente población mundial y su disposición en varias regiones habitadas es la preocupación de muchas organizaciones gubernamentales.
El agua cubre tres cuartas partes de la superficie de la Tierra. El 3% de su volumen es dulce. De ese 3%, un 1% está en estado líquido, componiendo los ríos y lagos. El 2% restante se encuentra formando casquetes o banquisa en las latitudes próximas a los polos.

Características físicas
El agua no tiene olor, sabor, ni color. Para obtener agua químicamente pura es necesario realizar diversos procesos físicos de purificación ya que el agua es capaz de disolver una gran cantidad de sustancias químicas, incluyendo gases.
Se llama agua destilada al agua que ha sido evaporada y posteriormente condensada. Al realizar este proceso se eliminan casi la totalidad de sustancias disueltas y microorganismos que suele contener el agua; es prácticamente la sustancia química pura H2O.
El punto de ebullición del agua a la presión de una atmósfera, que suele ser la que hay al nivel del mar, es de 100 °C, y su punto de congelación es de 0 °C. La densidad máxima del agua líquida es 1 g/cm3, alcanzándose este valor a una temperatura de 3,8 °C; la densidad del agua sólida es menor que la del agua líquida a la misma temperatura, 0,917 g/ml.
El agua tiene una tensión superficial muy elevada. El calor específico del agua es de 1 cal/°C·g.
El agua es considerada un disolvente universal, ya que es el líquido que más sustancias disuelve, por ser una molécula polar. Las moléculas de agua están unidas por puentes de hidrógeno.
El agua que es una molécula polar porque presenta polaridad eléctrica, con un exceso de carga negativa junto al oxígeno, compensada por otra positiva, repartida entre los dos átomos de hidrógeno; los dos enlaces entre hidrógeno y oxígeno no ocupan una posición simétrica, sino que forman un ángulo de 104° 45'. El agua es un termorregulador del clima, gracias a su elevada capacidad calorífica. Su elevada tensión superficial hace que se vea muy afectada por fenómenos de capilaridad.
Presenta un punto de ebullición de 100 °C (373 K) a presión de 1 atm.
Tiene un punto de fusión de 0 °C (273 K) a presión de 1 atm.
La temperatura crítica del agua(es decir aquella a partir de la cual no puede estar en estado líquido independientemente de la presión a la que esté sometida) es de 374ºC y se corresponde con una presión de 217,5 atmósferas.
El agua pura no conduce la electricidad (agua pura es el agua destilada libre de sales y minerales)
Es un líquido casi incoloro, inodoro e insípido. Estas son las propiedades organolépticas, es decir, las que se perciben con los órganos de los sentidos del ser humano.
Se presenta en la naturaleza de tres formas, que son: sólido, líquido o gas.
Tiene una densidad máxima de 1 g/cm3 a 277 K y presión 1 atm. Así, por cada centímetro cúbico (cm3) hay 1 g de agua.
Forma dos diferentes tipos de meniscos: cóncavo y convexo.
Tiene una tensión superficial, cuando la superficie de los líquidos se comporta como una película capaz de alargarse y al mismo tiempo ofrecer cierta resistencia al intentar romperla; esta propiedad contribuye a que algunos objetos muy ligeros floten en la superficie del agua.
Posee capilaridad, que es la propiedad de ascenso, o descenso, de un líquido dentro de un tubo capilar.
La capacidad calorífica es mayor que la de otros líquidos.
El calor latente de fusión del hielo se define como la cantidad de calor que necesita un gramo de hielo para pasar del estado sólido al líquido, manteniendo la temperatura constante en el punto de fusión (0 °C, o 273 k).
Calor latente de fusión del hielo a 0 °C: 80 cal/g (ó 335 J/g)
Calor latente de evaporación del agua a 100 °C: 540 cal/g (ó 2260 J/g)
Se cristaliza esponjosa (nieve)
Tiene un estado de sobreenfriado, es decir, líquido a -25 °C
Ayuda a regular el calor de los animales
Tiene un elevado calor de vaporización, y una elevada constante dieléctrica.
Proporciona flexibilidad a los tejidos.
Tiene una gran fuerza de cohesión entre sus moléculas, y la fuerza de adhesión por los puentes de hidrógeno que son muy termolábiles.

Propiedades químicas
Su importancia reside en que casi la totalidad de los procesos químicos que suceden en la naturaleza, no solo en organismos vivos sino también en la superficie no organizada de la tierra, así como los que se llevan a cabo en laboratorios y en la industria tienen lugar entre sustancias disueltas en agua. El agua es disolvente universal puesto que todas las sustancias son de alguna manera solubles en ella.
No posee propiedades ácidas ni básicas.
Con ciertas sales forma hidratos.
Reacciona con los óxidos de metales formando bases.
Es catalizador en muchas reacciones químicas.
Presenta un equilibrio de autoionización, en el cual hay iones H3O+ y OH-

Tratamiento del agua
Artículo principal: Tratamiento de aguas
En uno de los procesos básicos de purificación y tratamiento del agua que se realiza en plantas industriales, agregando hipoclorito de sodio y sulfato de aluminio, que son agentes coagulantes; esto forma hidróxido de aluminio, que es más conocido como flóculo, que queda flotando en el agua. Este proceso se denomina floculación.

Contaminación del agua
Artículo principal: Contaminación hídrica
El estado natural del agua puede ser afectado por procesos naturales; por ejemplo: los suelos, las rocas, algunos insectos y excrementos de animales. Otra forma como se puede cambiar su estado natural es artificialmente, fundamentalmente, por causas humanas; por ejemplo: con sustancias que cambien el pH y la salinidad del agua, producidas por actividades mineras.
La contaminación del agua ocurre en poblaciones que no tienen desagües, sistemas de disposición de excretas o deficientes procesos de recogida y almacenaje de desechos; y arrojar basuras y aguas fecales (o servidas) a los ríos.
Otra causa es el exceso de nutrientes: fertilizantes vertidos en agua, especialmente los compuestos por fósforo y su derivados, hacen que originen algas en exceso, impidiendo la entrada de luz solar al lago o laguna, y la muerte de los peces. Sustancias tóxicas, como los metales pesados (plomo y cadmio), generan bioacumulación. Los residuos urbanos (aguas negras o aguas servidas), que contienen excrementos, también generan contaminación.

Propiedades

Acción disolvente
El agua es el líquido que más sustancias disuelve, por eso se denomina disolvente universal. Esta propiedad disolvente, de gran importancia para la vida, se debe a su capacidad para formar puentes de hidrógeno con otras sustancias que pueden presentar grupos polares, o con carga iónica, como alcoholes, azúcares con grupos R-OH, aminoácidos y proteínas con grupos que presentan cargas + y -, dando lugar a disoluciones moleculares. También las moléculas de agua pueden disolver sustancias salinas que se disocian formando disoluciones iónicas.
En las disoluciones iónicas, los iones de las sales son atraídos por los dipolos del agua, quedando "atrapados" y recubiertos de moléculas de agua en forma de iones hidratados o solvatados. La capacidad disolvente es responsable de:
Las funciones metabólicas
Los sistemas de transporte

Elevada fuerza de cohesión
Los puentes de hidrógeno mantienen las moléculas de agua fuertemente unidas, formando una estructura compacta que la convierte en un líquido casi incompresible. Al no poder comprimirse puede funcionar en algunos animales como un esqueleto hidrostático, como ocurre en algunos gusanos perforadores capaces de agujerear la roca mediante la presión generada por sus líquidos internos.
La fuerza de cohesión permite que el agua se mantenga líquida a temperaturas no extremas. Así el agua puede actuar como vehículo de transporte en el interior de un ser vivo y como medio lubricante en sus articulaciones.

Propiedad de expandirse al enfriarse
El agua es una de las pocas sustancias que se expande al enfriarse. Esto se debe a que, al congelarse, sus moléculas se organizan en una estructura hexagonal, dejando más espacios entre ellas que en el agua liquida. Esta estructura de los cristales de hielo también es responsable de las peculiares formas hexagonales de los copos de nieve.

Elevada fuerza de adhesión
Esta fuerza está también en relación con los puentes de hidrógeno que se establecen entre las moléculas de agua y otras moléculas polares y es responsable, junto con la cohesión, del llamado fenómeno de la capilaridad. Cuando se introduce un capilar en un recipiente con agua, ésta asciende por el capilar como si trepase "agarrándose" por las paredes, hasta alcanzar un nivel superior al del recipiente, donde la presión que ejerce la columna de agua se equilibra con la presión capilar. A este fenómeno se debe en parte la ascensión de la savia bruta, desde las raíces hasta las hojas, a través de los vasos leñosos.

Gran calor específico
También esta propiedad está en relación con los puentes de hidrógeno que se crean entre las moléculas de agua. El agua puede absorber grandes cantidades de calor que utiliza para romper los puentes de hidrógeno, por lo que la temperatura se eleva muy lentamente. Esto permite que el citoplasma acuoso sirva de protección ante los cambios de temperatura. Así se mantiene la temperatura constante.

Elevado calor de evaporación
Sirve el mismo razonamiento, también los puentes de hidrógeno son los responsables de esta propiedad. Para evaporar el agua, primero hay que romper los puentes y posteriormente dotar a las moléculas de agua de la suficiente energía cinética para pasar de la fase líquida a la gaseosa. Para evaporar un gramo de agua se precisan 540 calorías, a una temperatura de 20 °C.

Propiedades importantes para los organismos

Agua
El agua tiene propiedades inusualmente críticas para la vida: es un buen disolvente y tiene alta tensión superficial. El agua pura tiene su mayor densidad a los 3,98 °C: es menos densa al enfriarse o al calentarse, ya que al llegar a convertirse en agua sólida (hielo) las moléculas se unen y forman una figura como un panal, lo que la hace menos densa. Como una estable molécula polar prevalente en la atmósfera, tiene un importante papel como absorbente de radiación infrarroja, crucial en el efecto invernadero. El agua también tiene un calor específico inusualmente alto, importante en la regulación del clima global.
El agua es un buen disolvente de muchas sustancias, como las diferentes sales y azúcares, y facilita las reacciones químicas lo que contribuye a la complejidad del metabolismo. Algunas sustancias, sin embargo, no se mezclan bien con el agua, incluyendo aceites y otras sustancias hidrofóbicas. Membranas celulares compuestas de lípidos y proteínas, aprovechan de esta propiedad para controlar las interacciones entre sus contenidos químicos y los externos. Esto se facilita en parte por la tensión superficial del agua.
Las gotas de agua son estables debido a su alta tensión superficial. Esto se puede ver cuando pequeñas cantidades de agua se ponen en superficies no solubles, como el vidrio, donde el agua se agrupa en forma de gotas. Esta propiedad es importante en la transpiración de las plantas.
Una propiedad del agua, ambientalmente importante, es que en forma sólida, el hielo, flota en el agua líquida. Esta fase sólida es menos densa que la líquida debido a la geometría de los fuertes enlaces de hidrógeno formados sólo a temperaturas bajas.
Para casi todas las demás sustancias y para todas las otras once fases no comunes del agua helada, excepto ice-XI, en estado sólido es más densa que en líquido. El agua pura presenta la máxima densidad a 3,8 °C, ascendiendo por convección, tanto cuando su temperatura aumenta, como cuando disminuye de ese valor. Esta propiedad origina que el agua más profunda permanezca más caliente que la superficial congelada, por lo que el hielo en un cuerpo de agua se formará primero en la superficie y crecerá hacia abajo, mientras que la mayor parte del agua bajo del hielo permanecerá a 3,8 °C. Esto aísla el fondo de un lago del frío exterior.
La vida en la Tierra ha evolucionado gracias a las importantes características del agua. La existencia de esta abundante sustancia en sus formas líquida, gaseosa y sólida ha sido sin duda un importante factor en la abundante colonización de los diferentes ambientes de la Tierra por formas de vida adaptadas a estas variantes y a veces extremas condiciones.

Ciclo del agua
Artículo principal: Ciclo del agua
El agua toma diferentes formas en la Tierra: vapor y nubes en el cielo, olas y témpanos de hielo flotante en el mar, glaciares en las montañas, acuíferos en el suelo, por nombrar algunos. A través de la evaporación, precipitación y escorrentía el agua se encuentra en continuo movimiento, fluyendo de una forma a otra en lo que es llamado el ciclo del agua.
Debido a la gran importancia de la precipitación para la agricultura y la humanidad en general, recibe diferentes nombres en sus diferentes formas: mientras que la lluvia es común en la mayoría de los países del mundo, otros fenómenos resultan sorprendentes al verlos por primera vez: granizo, nieve, neblina o rocío por ejemplo. Cuando se iluminan, las gotas de agua en el aire pueden refractar los colores del arco iris.
De manera similar, la escorrentía ha jugado un papel importante en la historia: los ríos y la irrigación acarrean el agua necesaria para la agricultura. Los ríos y los mares ofrecen oportunidades para el viaje y el comercio. Por la erosión, la escorrentía tuvo un papel importante en el moldeo del entorno, formando valles que proveen de tierra rica y suelo nivelado para el establecimiento de lugares poblados.
El agua también se infiltra en el suelo hasta los acuíferos. Este agua subterránea fluye después hasta la superficie en bocas de agua y pozos naturales, o más espectacularmente en géiseres. Este agua también se puede extraer artificialmente con norias y manantiales.
Porque el agua puede contener muchas sustancias diferentes, puede saber u oler de formas distintas. De hecho, el desarrollo de los sentidos permite evaluar la potabilidad del agua.

El cambio del estado en el agua

Agua cambiando de estado sólido a líquido.

Copos de nieve por Wilson Bentley, 1902

Estado sólido del agua
Artículo principal: Hielo
Al estar el agua en estado sólido, todas las moléculas se encuentran unidas mediante un enlace de hidrógeno, que es un enlace intermolecular y forma una estructura parecida a un panal de abejas, lo que explica que el agua sea menos densa en estado sólido que en el estado líquido. La energía cinética de las moléculas es muy baja, es decir que las moléculas están casi inmóviles.
Una de las peculiaridades del agua es que al congelarse tiende a expandirse y disminuir su densidad.
Es agua glacial sometida a extremas temperaturas y presiones criogénicas, que adquiere una alta capacidad subliminal, al pasar de sólida a vapor por la acción energética de los elementos que la integran —oxígeno e hidrógeno— y del calor atrapado durante su proceso de congelación-expansión. Es decir, por su situación de confinamiento a grandes profundidades se deshiela parcialmente, lo cual genera vapor a una temperatura ligeramente superior del helado entorno, suficiente para socavar y formar cavernas en el interior de los densos glaciales. Estas grutas, que además contienen agua proveniente de sistemas subglaciales, involucran a las tres fases actuales del agua, donde al interactuar en un congelado ambiente subterráneo y sin la acción del viento se transforman en el cuarto estado del agua: plasma semilíquido o gelatinoso.

Estado líquido del agua
Cuando el agua esta en estado líquido, al tener más temperatura, aumenta la energía cinética de las moléculas, por lo tanto el movimiento de las moléculas es mayor, produciendo quiebres en los enlaces de hidrógeno, quedando algunas moléculas sueltas, y la mayoría unidas.

Estado gaseoso del agua
Artículo principal: Vapor de agua

Nubes

Cuando el agua es gaseosa, la energía cinética es tal que se rompen todos los enlaces de hidrógeno quedando todas las moléculas libres. El vapor de agua es tan invisible como el aire; el vapor que se observa sobre el agua en ebullición o en el aliento emitido en aire muy frío, está formado por gotas microscópicas de agua líquida en suspensión, lo mismo que las nubes.

Importancia de la posición astronómica de la Tierra
La coexistencia de las fases sólidas, líquidas y gaseosas pero, sobre todo, la presencia permanente de agua líquida, es vital para comprender el origen y la evolución de la vida en la Tierra tal como es. Sin embargo, si la posición de la Tierra en el Sistema Solar fuera más cercana o más alejada del Sol, la existencia de las condiciones que permiten a las formas del agua estar presentes simultáneamente serían menos probables.
La masa de la Tierra permite mantener la atmósfera. El vapor de agua y el dióxido de carbono en la atmósfera causan el efecto invernadero, lo que ayuda a mantener relativamente constante la temperatura superficial. Si el planeta tuviera menos masa, una atmósfera más delgada causaría temperaturas extremas no permitiendo la acumulación de agua excepto en los casquetes polares (como en Marte). De acuerdo con el modelo nébula solar de la formación del Sistema Solar, la masa de la Tierra se debe en gran parte a su distancia al Sol.
La distancia entre el Sol y la Tierra y la combinación de radiación solar recibida y el efecto invernadero en la atmósfera aseguran que su superficie no sea demasiado fría o caliente para el agua líquida. Si la Tierra estuviera más alejada del Sol, el agua líquida se congelaría. Si estuviera más cercana, su temperatura superficial elevada limitaría la formación de las capas polares o forzaría al agua a existir solo como vapor. En el primer caso, la baja reflectibilidad de los océanos causaría la absorción de más energía solar. En el último caso, la Tierra sería inhabitable (al menos por las formas de vida conocidas) y tendría condiciones semejantes a las del planeta Venus.
Las teorías Gaia proponen que la vida se mantiene adecuada a las condiciones por sí misma al afectar el ambiente de la Tierra.

El agua en la vida diaria
Todas las formas de vida conocidas dependen del agua. El agua es parte vital de muchos procesos metabólicos en el cuerpo. Cantidades significantes de agua son usadas durante la digestión de la comida. Sin embargo, algunas bacterias y semillas de plantas pueden entrar a un estado criptobiótico por un período de tiempo indefinido cuando se deshidratan, y vuelven a la vida cuando se devuelven a un ambiente húmedo.
Cerca del 72% de la masa libre de grasa del cuerpo humano está hecha de agua. Para su adecuado funcionamiento nuestro cuerpo requiere entre uno y tres litros de agua diarios para evitar la deshidratación, la cantidad precisa depende del nivel de actividad, temperatura, humedad y otros factores. El cuerpo pierde agua por medio de la orina y las heces, la transpiración y la exhalación del vapor de agua en nuestro aliento.
Los seres humanos requieren agua pobre en sales y otras impurezas. Entre las impurezas también se cuentan sustancias químicas o, en otro sentido, microorganismos perjudiciales. Algunos solutos son aceptables y hasta deseables para un sabor apropiado. El agua adecuada para beber se llama agua potable.

Agua dura
Artículo principal: Agua dura
Existe el tipo de agua llamada agua dura, la cual alberga minerales, como son mayores cantidades de carbonatos de calcio y magnesio y sulfatos principalmente, de sulfuro, azufre y hierro, que lleva en si un tanto del óxido rojizo, más aún es bien empleada en el uso cotidiano, incluyendo el consumo, aunque no tenga la nitidez del agua purificada; por consiguiente, el agua dura, dependiendo de los niveles de minerales, tiene sabor y puede ser ligeramente turbia.
También se debe a la presencia de sales cálcicos y magnésicas cuya presencia (dureza temporal) suele producir depósitos de sarro en las teteras y otras superficies en contacto con el agua dura.
Para "mejorar" sus cualidades y hacer del agua dura, agua que no manche con óxido o con sarro se utilizan ablandadores de intercambio iónico, ablandadores de resina regenerable con sal (ablandador) en aparatos especialmente diseñados para el proceso de ablandamiento.
El agua dura puede ser sacada directamente de pozos, dependiendo de la tierra; por lo general, el agua dura no pertenece a una red citadina de distribución, sino que es un recurso del campo. Una forma de cuantificar la dureza total del agua, es sumar la dureza cálcica (concentración de masa de cationes cálcicos Ca2+ en el agua) y la dureza magnésica (concentración de masa de cationes magnésicos Mg2+ en el agua). Mientras más alto el valor de la dureza total, más dura es el agua.
Uno de los métodos más modernos para purificar agua es la ósmosis reversa u inversa.

Un recurso escaso
Debido al crecimiento de la población humana y otros factores, la disponibilidad del agua potable por persona está disminuyendo. Este problema podría resolverse obteniendo más agua, distribuyéndola mejor o desperdiciándola menos.
El agua es un recurso estratégico para muchos países. Se han peleado muchas guerras, como la Guerra de los seis días en el Medio Oriente, para poder obtener un mejor acceso al agua. Se prevé más problemas de este tipo en el futuro por la creciente población humana, contaminación y calentamiento global.
El World Water Development Report (informe mundial del desarrollo del agua) de la UNESCO (2003) de su World Water Assessment Program (Programa mundial para la estimación del agua) indica que en los próximos 20 años, la cantidad de agua disponible para todos decrecerá en un 30%. El 40% de los habitantes del mundo actualmente no tiene la cantidad mínima necesaria para el mínimo aseo. Más de 2,2 millones de personas murieron en el año 2000 por enfermedades relacionadas con el consumo de agua contaminada o por ahogamiento. En 2004 el programa de caridad enfocado al agua WaterAid del Reino Unido informó que un niño muere cada 15 segundos debido a las enfermedades relacionadas con el agua que podrían fácilmente evitarse.

Posibles soluciones para mejorar la disponibilidad del agua
Posibles soluciones para mejorar la disponibilidad del agua: producir más, distribuirla mejor y desperdiciarla menos. Hervirla y destilarla. Existen otras técnicas más avanzadas, como la ósmosis inversa.
Distribuirla mejor: La distribución del agua se lleva a cabo por medio de los sistemas de agua municipales o como agua embotellada. Algunos países tienen programas para distribuir el agua a los más necesitados libre de cargos.
Cabe también resaltar la preocupación cada vez mayor por sustentar mecanismos de medición del agua que se consume en los países en desarrollo con el fin de tener un mayor control sobre su consumo y sobre el transporte del líquido elemento hacia los consumidores.
Reutilizarla: El agua (H2O) es la misma molécula, tanto en el agua potable como en las aguas servidas, la de las cloacas, para ser claros. La diferencia está, y no es poca cosa, en las sustancias, orgánicas o inorgánicas disueltas y trasportadas en suspensión por ésta. Por lo tanto, el agua puede ser en teoría, reutilizada infinitamente, y de hecho, en eso se basa justamente el "ciclo del agua". Por lo tanto, si el agua la devolviéramos a la naturaleza, en un estado de pureza suficiente para que los mecanismos naturales de depuración pudieran limpiarla, la disponibilidad del recurso hídrico mejoraría.
Desde un punto de vista político, el agua podría llegar a ser declarado un derecho humano, [1] y algunos países como Uruguay o España han dado pasos en ese sentido al declararlo un bien colectivo [2] o de dominio público.

El agua en la cultura humana
El agua es considerado purificador en muchas religiones, incluyendo el Cristianismo, el Islam y el Judaísmo. Por ejemplo, el bautizo en las iglesias cristianas se lleva a cabo con agua. También un baño ritual con agua pura se celebra para los muertos en muchas religiones incluyendo el Judaísmo y el Islam. En el Islam, el Salah diario solo se puede hacer después de la Ablución que consiste en lavarse partes del cuerpo con agua limpia. En el Shinto, el agua se usa en casi todos los rituales para purificar a una persona o lugar.
Al agua se le da poderes espirituales en muchas ocasiones. En la mitología celta, Sulis es la diosa local de las aguas termales; en la cultura hindú, la Ganga es personificada como una diosa. Alternativamente, los dioses pueden ser patrones de algunas aguas, ríos o lagos; en la mitología griega y romana, Peneus era un dios de un río.
Empédocles, un filósofo griego, sostenía que el agua era uno de los cuatro elementos clásicos junto con el fuego, la tierra y el aire, y era la materia primordial del Universo o ylem. En la teoría de los cuatro humores corporales, el agua se asocia con el phlegm. El agua también era uno de los Cinco elementos en el Taoísmo chino, junto con la tierra, el fuego, la madera y el metal,
La Fundación Nueva Cultura del Agua es una entidad fundada por dos universidades, la Universidad de Zaragoza y la Universidad Politécnica de Valencia junto a un grupo de personas que promueven una Nueva Cultura del Agua.

¿Agua que desafía la humedad?
Por definición el agua se mezcla fácilmente con otra de su clase; brazos abiertos (puentes) de hidrógeno se enlazan con el oxígeno de otros radicales hidroxilos (OH). Esta es la propia definición de "humedad". Pero científicos del PNNL (Pacific Northwest National Laboratory) han observado una primicia: una monocapa de agua (hielo que ha crecido en una oblea de platino) que repele capas subsecuentes de hielo que entran en contacto con ella.
Las interacciones del agua con superficies son ubicuas en la naturaleza y desempeñan un papel importante en muchas aplicaciones tecnológicas tales como la catálisis y la corrosión.
Se había asumido que un extremo de la molécula de agua se enlazaría con el metal, y al otro extremo estarían estos conocidos puntos para la formación de puentes de hidrógeno con los átomos en la próxima capa de agua.
Los investigadores usaron una técnica que utiliza criptón para sondear superficies metálicas y capas de agua en esas superficies. Encontraron que la primera capa de agua, o monocapa, humedecía la superficie de platino como habían esperado, pero las capas subsecuentes no mojaron la primera. En otras palabras, la primera capa de agua es hidrofóbica.
Esta agua que rechaza al agua en el metal es más que una curiosidad, y constituirá una sorpresa para muchos especialistas que han asumido que las películas de agua cubren uniformemente las superficies.
Se han hecho cientos de experimentos en películas delgadas de agua formadas en superficies de metal para aprender cosas acerca de cómo estas películas afectan a las moléculas con las que entran en contacto, y qué papel tienen en estas interacciones el calor, la luz y la radiación de alta energía.